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Abstract—This paper presents a wide framework for non-
linear online supervised learning tasks in the context of complex
valued signal processing. The (complex) input data are mapped
into a complex Reproducing Kernel Hilbert Space (RKHS),
where the learning phase is taking place. Both pure complex
kernels and real kernels (via the complexification trick) can be
employed. Moreover, any convex, continuous and not necessarily
differentiable function can be used to measure the loss between
the output of the specific system and the desired response.
The only requirement is the subgradient of the adopted loss
function to be available in an analytic form. In order to derive
analytically the subgradients, the principles of the (recently
developed) Wirtinger’s Calculus in complex RKHS are exploited.
Furthermore, both linear and widely linear (in RKHS) estimation
filters are considered. To cope with the problem of increasing
memory requirements, which is present in almost all online
schemes in RKHS, the sparsification scheme, based on projec-
tion onto closed balls, has been adopted. We demonstrate the
effectiveness of the proposed framework in a non-linear channel
identification task, a non-linear channel equalization problem
and a QPSK equalization scheme, using both circular and non
circular synthetic signal sources.

Index Terms—Wirtinger’s Calculus, Complex Kernels, Adap-
tive Kernel Learning, Projection, Subgradient, Widely Linear
Estimation

I. INTRODUCTION

K ernel based methods have been successfully applied in

many classification, regression and estimation tasks in a

variety of scientific domains ranging from pattern recognition,

image and signal processing to biology and nuclear physics

[1]–[24]. Their appeal lies mainly on the solid and efficient

mathematical background which they rely upon: the theory of

Reproducing Kernel Hilbert Spaces (RKHS) [25], [26]. The

main advantage of mobilizing this powerful tool of RKHS is

that it offers an elegant tactic to transform a nonlinear task (in

a low dimensional space) into a linear one, that is performed in

a high dimensional (possible infinite) space, and which can be

solved by employing an easier “algebra”. Usually, this process

is described through the popular kernel trick [1], [2]:

“Given an algorithm, which can be formulated in

terms of dot (inner) products, one can construct an
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alternative algorithm by replacing each one of the

dot products with a positive definite kernel κ.”

Although this trick works well for most applications, it con-

ceals the basic mathematical steps that underlie the procedure,

which are essential if one seeks a deeper understanding of the

problem. These steps are: 1) Map the finite dimensionality

input data from the input space F (usually F ⊂ Rν) into

a higher dimensionality (possibly infinite) RKHS H and 2)

Perform a linear processing (e.g., adaptive filtering) on the

mapped data in H. The procedure is equivalent with a non-

linear processing (non-linear filtering) in F . The specific

choice of the kernel κ defines, implicitly, an RKHS with an

appropriate inner product. Moreover, the specific choice of the

kernel defines the type of nonlinearity that underlies the model

to be used.

Undeniably, the flagship of the so called kernel methods is

the popular Support Vector Machines paradigm [1]–[4]. This

was developed by Vapnik and Chervonenkis in the sixties and

in its original form was a linear classifier. However, with

the incorporation of kernels it became a powerful nonlinear

processing tool with excellent generalization properties, as it

is substantiated by strong theoretical arguments in the context

of the Statistical Learning Theory [3], and it has been verified

in practice, e.g., [2].

Motivated mainly by the success of SVMs in classification

problems, a large number of kernel based methods emerged

in various domains. However, most of these methods relate

to batch processing, where all necessary data are available

beforehand. Over the last five years, significant efforts have

been devoted to the development of online kernel methods for

adaptive learning (e.g., adaptive filtering) [5]–[12], where the

data arrive sequentially. However, all the aforementioned ker-

nel methods (batch and online) were targeted for applications

of real data sequences.

Complex-valued signals arise frequently in applications

as diverse as communications, biomedicine, radar, etc. The

complex domain not only provides a convenient and elegant

representation for these signals, but also a natural way to

preserve their characteristics and to handle transformations

that need to be performed. Therefore, it is natural to wonder

whether we should be able to apply the machinery of ker-

nels to handle learning tasks in complex domains. However,

although real RKHS have become quite popular and they

have been used in a large number of applications, complex

kernels (such as the complex Gaussian RBF kernel), while

known to the mathematicians (especially those working on

Reproducing Kernel Hilbert Spaces or Functional Analysis),

have rather remained in obscurity in the Machine Learning
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and Signal Processing communities. Only recently, in [19],

a unified framework for processing in complex RKHS has

been developed. This can be achieved either by using popular

real kernels (such as the Gaussian RBF), taking advantage

of a technique called complexification of real RKHS, or by

employing any pure complex kernel (such as the complex

Gaussian RBF). In [19], this framework was applied to the

complex Least Mean Squares (LMS) task and two realizations

of the complex Kernel LMS (CKLMS) were developed.

In the more traditional setting, treating complex valued sig-

nals is often followed by (implicitly) assuming the circularity

of the signal. Circularity is intimately related to the rotation

in the geometric sense. A complex random variable Z is

called circular, if for any angle φ, both Z and Zeiφ (i.e.,

the rotation of Z by angle φ) follow the same probability

distribution [27], [28]. Naturally, this assumption limits the

area for applications, since many practical signals exhibit non-

circular characteristics. Thus, following the ideas originated

by Picinbono in [29], [30], on-going research is focusing on

the widely linear filters (or augmented filters) in the complex

domain (see, for example, [27], [28], [31]–[43]). The main

characteristic of such filters is that they exploit simultaneously

both the original signal as well as its conjugate analogue.

The present paper builds upon the rationale of [19] and

extends the theory to the case of complex subgradients, to

be used in the context of the powerful Adaptive Projected

Subgradient Method (APSM) [44]–[46], both for linear and

widely linear formulations. The APSM employs concepts of

operators in Hilbert spaces, [47], in order to derive efficient

generalizations of classical adaptive filtering concepts, [48],

[49] and significantly facilitate the treatment of convexly

constrained time-adaptive learning tasks, [50]. Thus, in this

study, the APSM machinery is extended to the complex case,

to provide a wide toolbox for adaptive learning in complex

RKHS. In this context, any convex function (not necessarily

differentiable) can be used as a measure of loss in the learning

task. The only requirement is that the subgradients of the

loss function must take an analytic form. To infuse robustness

into the design, the ǫ-insensitive version of the corresponding

chosen loss function is utilized, due to its attractive features,

which are widely known in robust statistics, [1], [3], [51]. As

this method employs subgradients in the minimization process,

Wirtinger’s Calculus is further extended and the notion of

the Wirtinger’s subgradients is introduced. To the best of our

knowledge, this is the first time that this notion is developed in

the respective literature, and its value goes beyond the current

context of APSM and can be used in any optimization task,

that involves subgradients in complex spaces.

The paper is organized as follows. In section II, the main

properties of RKHS are presented and the differences between

real and complex RKHS are highlighted. In section III, the

main characteristics of the recently developed Wirtinger’s cal-

culus in complex RKHS are briefly sketched, before the notion

of Wirtinger’s subgradients for real functions of complex

variables is introduced. Applying this newly developed tool,

we compute the subgradients of the ǫ-insensitive versions of

several popular loss functions (e.g., l2, l1, Huber). The com-

plexification and the pure complex kernelization procedures

are also described there. Section IV presents a detailed descrip-

tion of the proposed algorithmic scheme, i.e., the Complex

Kernel Adaptive Projected Subgradient Method, for adaptive

filtering problems. Finally, Section V provides experimental

results in the context of (non-linear) channel identification

and equalization tasks. Throughout the paper, we will denote

the set of non negative integers, real and complex numbers

by N,R,C respectively. For any integers k1 ≤ k2, by k1, k2
we denote the set {k1, k1 + 1, . . . , k2}. The complex unit is

denoted as i =
√
−1. Vector and matrix valued quantities

appear in boldface symbols.

II. REPRODUCING KERNEL HILBERT SPACES

In this section, we briefly describe the theory of Reproduc-

ing Kernel Hilbert Spaces, as this is the main mathematical

tool employed in this study. Since we are interested in both

real and complex kernels, we recall the basic facts on RKHS

associated with a general field F, which can be either R or C.

However, we highlight the basic differences between the two

cases. The interested reader may dig deeper on this subject by

referring to [52] (among others).

Given a function κ : X × X → F and x1, . . . ,xN ∈ X
(typically X is a subset of Rν or Cν , ν > 0), the matrix1

K = (Kn,m)N with elements Kn,m = κ(xn,xm), for

n,m = 1, . . . , N , is called the Gram matrix (or kernel

matrix) of κ with respect to x1, . . . , xN . A Hermitian matrix

K = (Kn,m)N satisfying

cH ·K · c =
N
∑

n=1,m=1

c∗ncmKn,m ≥ 0,

for all cn ∈ F, n = 1, . . . , N , where the notation ∗ denotes

the conjugate element and ·H the Hermitian matrix, is called

Positive Definite. In matrix analysis literature, this is the

definition of a positive semidefinite matrix. However, since

this is a rather cumbersome term and the distinction between

positive definite and positive semidefinite matrices is not

important in this paper, we employ the term positive definite,

as it was already defined. A function κ : X ×X → F, which

for all N ∈ N and all x1, . . . ,xN ∈ X gives rise to a positive

definite Gram matrix K , is called a Positive Definite Kernel.

In the following, we will frequently refer to a positive definite

kernel simply as kernel.

Next, consider a linear class H of complex valued functions,

f , defined on a set X . Suppose, further, that in H we can

define an inner product 〈·, ·〉H with corresponding norm ‖ ·‖H
and that H is complete with respect to that norm, i.e., H is a

Hilbert space. We call H a Reproducing Kernel Hilbert Space

(RKHS), if there exists a function κ : X ×X → F with the

following two important properties:

1) For every x ∈ X , κ(·,x) belongs to H.

2) κ has the so called reproducing property, i.e.,

f(x) = 〈f, κ(·,x)〉H, for all f ∈ H,x ∈ X, (1)

in particular κ(x,y) = 〈κ(·,y), κ(·,x)〉H.

1The term (Kn,m)N denotes a square N ×N matrix.
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It has been shown (see [25]) that to every positive def-

inite kernel κ there corresponds one class of functions H
with a uniquely determined inner product in it, forming a

Hilbert space and admitting κ as a reproducing kernel. In

fact, the kernel κ produces the entire space H, i.e., H =
span{κ(x, ·)|x ∈ X}2. The map Φ : X → H : Φ(x) =
κ(·,x) is called the feature map of H. Recall, that in the

case of complex Hilbert spaces (i.e., F = C) the inner product

is sesqui-linear (i.e., linear in one argument and antilinear in

the other) and Hermitian:

〈af + bg, h〉H = a〈f, h〉H + b〈g, h〉H,

〈f, ag + bh〉H = a∗〈f, g〉H + b∗〈f, h〉H,

〈f, g〉∗H = 〈g, f〉H,

for all f, g, h ∈ H, and a, b ∈ C. In the real case, the condition

κ(x,y) = 〈κ(·,y), κ(·,x)〉H may be replaced by κ(x,y) =
〈κ(·,x), κ(·,y)〉H. However, since in the complex case the

inner product is Hermitian, the aforementioned condition is

equivalent to κ(x,y) = (〈κ(·,x), κ(·,y)〉H)
∗
.

Although, the underlying theory has been developed by the

mathematicians for general complex reproducing kernels and

their associated RKHSs, it is the case of the real kernels that

has been considered, mainly, by the Machine Learning and

Signal Processing communities. Some of the most widely used

kernels are the Gaussian RBF, i.e.,

κσ,Rd(x,y) := exp

(

−
∑d

k=1(xk − yk)
2

σ2

)

, (2)

defined for x,y ∈ Rd, where σ is a free positive parameter and

the polynomial kernel: κd(x,y) :=
(

1 + xTy
)d

, for d ∈ N,

where ·T stands for the transpose matrix. Many more kernels

emerging from various aspects of mathematics (ranging form

splines and wavelets to fractals) can be found in the related

literature [1], [2], [4], [53].

Complex reproducing kernels, that have been extensively

studied by the mathematicians, are, among others, the Szego

kernels, i.e, κ(z, w) = 1
1−w∗z

, for Hardy spaces on the unit

disk, and the Bergman kernels, i.e., κ(z, w) = 1
(1−w∗z)2 ,

for Bergman spaces on the unit disk, where |z|, |w| < 1
[52]. Another important complex kernel, that has remained

relatively unknown in the Machine Learning and Signal Pro-

cessing communities, is the complex Gaussian kernel

κσ,Cd(z,w) := exp

(

−
∑d

k=1(zk − w∗
k)

2

σ2

)

, (3)

defined on C
d × C

d, where z,w ∈ C
d, zk denotes the k-

th component of the complex vector z ∈ Cd and exp is

the extended exponential function in the complex domain.

Its restriction κσ :=
(

κσ,Cd

)

|Rd×Rd is the well known real

Gaussian kernel (2). An explicit description of the RKHSs of

these kernels, together with some important properties can be

found in [54].

2The overbar denotes the closure of the set.

III. WORKING ON COMPLEX RKHS

A. Wirtinger’s Calculus on complex RKHS

Wirtinger’s calculus [55] (or CR-Calculus) was brought

into light recently [27]–[29], [31], [56], [57], as a means to

compute, in an efficient and elegant way, gradients of real

valued cost functions that are defined on complex domains

(Cν). Although these gradients may be derived equivalently

in the traditional way, if one splits the complex variables to

the real and imaginary parts and considers the corresponding

partial derivatives, Wirtinger’s toolbox usually requires much

less algebra and involves simpler expressions. It is based on

simple rules and principles, which bear a great resemblance

to the rules of the standard complex derivative, and it greatly

simplifies the calculations of the respective derivatives; these

are evaluated by treating z and z∗ independently using tradi-

tional differentiation rules. In [19], the notion of Wirtinger’s

calculus was extended to general complex Hilbert spaces,

providing the tool to compute the gradients that are needed

to develop kernel-based algorithms for treating complex data.

This extension mainly uses the notion of the Fréchet differ-

entiability, which is a path to generalize differentiability to

general Hilbert spaces. In this section, however, we give a

brief description and thus we do not get into much details

about Fréchet differentiability. The interested reader may find

more on the subject in [19], [58].

We begin our discussion with some basic definitions. Let

X ⊆ Rν . Define X2 ≡ X × X ⊆ R2ν and X = {z =
x + iy|x,y ∈ X} ⊆ Cν , which is equipped with a complex

product structure. Let H be a real RKHS associated with

a real kernel κ defined on X2 × X2 and let 〈·, ·〉H be its

corresponding inner product. Note that, under the mapping

(x,y) → z = x+ iy, X2 is isomorphic to X (under the same

mapping, R
2 is isomorphic to C). Thus, every real valued

f ∈ H can be regarded as a function defined on either X2 or

X, i.e., f(z) = f(x + iy) = f(x,y), for z = x+ iy. Next,

we define H2 = H×H. It is easy to verify that H2 is also a

Hilbert Space with inner product

〈f , g〉H2 = 〈f1, g1〉H + 〈f2, g2〉H, (4)

for f = (f1, f2), g = (g1, g2). Our objective is to enrich H2

with a complex structure. To this end, we define the RKHS

H = {f = f1 + if2|f1, f2 ∈ H} equipped with the complex

inner product:

〈f , g〉H = 〈f1, g1〉H + 〈f2, g2〉H + i (〈f2, g1〉H − 〈f1, g2〉H) .

Similarly to the case of X2 and X, under the mapping

(f1, f2) → f = f1 + if2, H2 becomes isomorphic to H.

Consider the function T : A ⊆ H → C, T (f) = Tr(f ) +
iTi(f) defined on an open subset A of H, where uf , vf ∈ H,

f = uf + ivf and Tr, Ti are real valued functions defined on

H2. Due to the isomorphisms R
2 ≃ C and H2 ≃ H, we may

equivalently write:

T (f) = (Tr(uf , vf ), Ti(uf , vf ))
T
, (5)

or

T (f) = T (uf + ivf ) = Tr(uf , vf ) + iTi(uf , vf ). (6)
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Based on the isomorphism between H2 and H, two types

of differentiability may be considered. In the first case,

if we apply the notion of the Fréchet differentiability on

T : H2 → R2 (5), we may define the derivative of T at

c = (uc,vc) and the respective gradient, i.e., ∇T (c), as well

as the partial derivatives of T at c, ∇uT (c) and ∇vT (c).
If ∇T (c) exists, we will say that T is Fréchet differentiable

in the real sense. On the other hand, applying the notion of

Fréchet differentiability on T : H → C (6), we may define

the complex derivative of T at c = uc + ivc, i.e., dT (c).
In this case, if dT (c) exists, we will say that T is Fréchet

differentiable in the complex sense. However, the notion of

complex differentiability is rather strict and it excludes the case

of real valued functions T (these, as it can easily be shown, do

not obey the Cauchy-Riemann conditions), which are present

in all optimization tasks (taking the form of cost functions).

The goal in this work is to employ Wirtinger’s calculus as an

alternative tool for computing derivatives. Wirtinger’s calculus,

although based on the Fréchet differentiability in the real

sense, exploits the complex algebra to make the computations

easier and the derived formulas more compact [19], [58].

Definition 1. We define the Fréchet Wirtinger’s gradient (or

W-gradient for short) of T at c as

∇fT (c) =
1

2
(∇uT (c)− i∇vT (c)) (7)

=
1

2
(∇uTr(c) +∇vTi(c)) +

i

2
(∇uTi(c)−∇vTr(c)) ,

and the Fréchet conjugate Wirtinger’s gradient (or CW-

gradient for short) of T at c as

∇f∗T (c) =
1

2
(∇uT (c) + i∇vT (c)) (8)

=
1

2
(∇uTr(c)−∇vTi(c)) +

i

2
(∇uTi(c) +∇vTr(c)) .

Remark 1. The rationale that underlies these particular defini-

tions becomes apparent if one considers the Taylor expansion

formula of T . In [19], it is shown that

T (c+ h) =T (c) +
1

2

〈

h, (∇uT (c)− i∇vT (c))∗
〉

H
(9)

+
1

2

〈

h∗, (∇uT (c) + i∇vT (c))
∗〉

H
+ o(‖h‖H).

The main rules of the generalized calculus can be found

in [19]. In view of these properties, one might easily compute

the W and CW gradients of any complex function T , which is

written in terms of f and f
∗
, following the following simple

tricks:

• To compute the W-derivative of a function T ,

which is expressed in terms of f and f∗, apply

the differentiation rules considering f∗ as a

constant.

• To compute the CW-derivative of a function

T , which is expressed in terms of f and f∗,

apply the differentiation rules considering f as

a constant.

B. Wirtinger’s Subgradients

Since subgradients of operators, which are defined on

Hilbert spaces, play a crucial role in several parts of this paper,

it is important to present their formal definition. For real valued

convex functions, defined on real Hilbert spaces, the gradient

at x0 satisfies the well known first order condition:

T (z) ≥ T (x0) + 〈∇T (x0), z − x0〉,

for all z. This condition has a simple geometric meaning when

T is finite at x0: it says that the graph of the affine function

h(z) = T (x0)+〈∇T (x0), z−x0〉 is a non-vertical supporting

hyperplane to the convex set epiT 3 at (x0, T (x0)). In other

words, (a) h(z) defines an osculant hyperplane of the graph

of T at (x0, T (x0)) and (b) all the points of the graph of

T lie at the same side of the hyperplane. Moreover, it is

well known that, in optimization tasks, the gradient direction

guarantees a path towards the optimal point. If T is not Fréchet

differentiable at x, we can still construct such an osculant

hyperplane (and a corresponding path towards the optimal

point) using the subgradient.

Definition 2. Let T : H → R be a convex function defined

on a real Hilbert space (H , 〈·, ·〉H ). A vector x∂ ∈ H is said

to be a subgradient of T at x0 if

T (z) ≥ T (x0) + 〈x∂ , z − x0〉H. (10)

The set of all subgradients of T at x0 is called the subdiffer-

ential of T at x0 and is denoted by ∂T (x0).

The notion of the subgradient is a generalization of the

classical differential of a function T , at x0, and it has proved

itself an indispensable tool for modern optimization tasks,

which involve objective functions that are not differentiable

[47], [59]. In the case of real-valued objective functions, the

use of the subgradient has shown a very rich potential for

demanding adaptive learning optimization tasks, e.g., [12],

[50], [60] and has also been popularized in the context of

ℓ1 norms in the framework of compressive sensing.

It is clear that definition 2 cannot be applied for complex

valued functions, as it involves inequalities. Nevertheless, our

objective is to introduce a Wirtinger-like subgradient for the

special case of a real function T : H → R. Suppose that

∇sT (c) = (∇s
uT (c),∇s

vT (c))
T

is a subgradient of T at c =
(cu, cv)

T , if we consider that T is defined on H2 instead of

H. Then the following inequalities hold

T (c+ h) ≥T (c) + 〈h,∇sT (c)〉H2

≥T (c) +

〈(

hu

hv

)

,

(

∇s
uT (c)

∇s
vT (c)

)〉

H2

≥T (c) + 〈hu,∇s
uT (c)〉H + 〈hv,∇s

vT (c)〉H. (11)

This will be our kick off point for the derivation of the

respective Wirtinger-like subgradients.

Definition 3. To be inline with the definition of Wirtinger

gradients, we define the Wirtinger subgradient of T : H → R

3epi T denotes the epigraph of T , i.e. the set {(x, y) : x ∈ H, y ∈ R :
T (x) ≤ y}.
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at c = cu + i · cv as

∇s
fT (c) =

1

2
(∇s

uT (c)− i · ∇s
vT (c)) , (12)

and the conjugate Wirtinger subgradient of T at c as

∇s
f∗T (c) =

1

2
(∇s

uT (c) + i · ∇s
vT (c)) , (13)

for any ordinary subgradient ∇sT (c) of T at c = (cu, cv)
T .

The set of all conjugate Wirtinger’s subgradients of T at c is

called the Wirtinger subdifferential of T at c and is denoted

by ∂f∗T (c).

Under the scope of the aforementioned definitions, as hu =
h+h∗

2 and hv = h−h∗

2i , one can easily prove that

〈h,∇sT (c)〉H2 =〈hu,∇s
uT (c)〉H + 〈hv,∇s

vT (c)〉H
=〈h, (∇s

fT (c))
∗〉H + 〈h∗, (∇s

f∗T (c))∗〉H
=2ℜ

(

〈h, (∇s
fT (c))

∗〉H
)

.

Therefore, from (11) we obtain

T (c+ h) ≥T (c) + 〈h, (∇s
fT (c))

∗〉H + 〈h∗, (∇s
f∗T (c))∗〉H.

(14)

or equivalently

T (c+ h) ≥T (c) + 2ℜ
(

〈h, (∇s
fT (c))

∗〉H
)

. (15)

Relation (14) can be thought of as a type of Wirtinger

subgradient inequality (i.e., an inequality similar to (10) in

definition 2). At this point, we should note, that although we

defined two types of Wirtinger subgradients, in order to be

consistent with the definition of Wirtinger gradients, only one

will be used (the ∇s
f∗T (c)) in the subsequent sections, as the

second subgradient, ∇s
fT (c), is ∇s

f∗T (c)’s conjugate. The

following Lemma is an extension of the one presented in [61],

Theorem 25.6:

Lemma 1. Let l : Cν → R be a convex continuous function.

Also, let X (c) be the set of all limit points of sequences of

the form (∇f∗ l(zn))n∈N
, where (zn)n∈N is a sequence of

points at which l is Fréchet differentiable in the real sense

and limn→∞zn = c. Then, the Wirtinger subdifferential of l
at c is given by ∂f∗ l(c) = conv(X (c)), where conv denotes

the convex hull of a set, and the overline symbol stands for

the closure of a set.

Proof: Observe that the conjugate Wirtinger subgradient

is given by ∇s
f∗ l(c) = 1

2 (∇s
ul(c) + i · ∇s

vl(c)), while the

Fréchet subgradient obtained if we consider l(c) defined on

R2ν is ∇sl(x,y) = (∇s
ul(x,y),∇s

vl(x,y))
T . Similar results

hold for the Wirtinger gradient and the Fréchet gradient if

l is differentiable at c. This implies an 1-1 correspondence

between the conjugate Wirtinger subgradient ∇s
f∗ l(c) and the

Fréchet subgradient 1
2∇sl(x,y). A similar correspondence

exists between the conjugate Wirtinger gradient ∇f∗ l(c) and

the Fréchet gradient 1
2∇l(x,y). Hence, applying Theorem

25.6 of [61] gives the result.

Remark 2. We emphasize that the definition of the Wirtinger

subgradient is a general one and it can be employed whenever

a function T is not Fréchet differentiable in the real sense. In

this paper, we exploit its use to derive the necessary subgra-

dients in the context of the Adaptive Projected Subgradient

Method.

C. Mapping data to complex RKHS

This paper considers the case of supervised (regression)

learning, i.e., the scenario where a sequence zn ∈ Cν , of

complex input data, and a sequence dn ∈ C, of complex

desired responses, are available to the designer. No assump-

tion is made on the stochastic processes hidden behind the

sequence (zn, dn)n≥0. Moreover, the stochastic properties of

both (zn)n≥0 and (dn)n≥0 are susceptible to change as n
grows larger. In the supervised learning scenario, one typically

estimates the output as d̂n = Dn(z(n)), where Dn are

time-varying sequences of complex functions, so that the

“disagreement” between dn and d̂n, measured via a user-

defined loss function, i.e., l(dn − d̂n), obtains some small

value. The choice of the space, where Dn lives, determines

the accuracy of the estimation. For example, in a typical

CLMS task, Dn are C-linear functions, i.e., Dn(z) = wH
n z,

for some wn ∈ Cν , while in a typical widely linear LMS

(WL-LMS) task they take the form of R-linear functions, i.e.,

Dn(z) = wHz + vHz∗, for some wn,vn ∈ Cν [62]. In the

machinery presented in this paper, Dn are non-linear functions

implicitly defined by the specific choice of the complex RKHS,

where the input complex data zn are mapped.

We can perform such transformations either by employing

pure complex kernels, or via traditional real kernels, as it

has been substantiated in [19]. For the first case, which we

will henceforth call pure complex kernelization procedure, the

choice of a complex kernel κC implicitly defines the complex

RKHS H, where the data are mapped. The transformation

from input space Cν to the complex RKHS takes place via

the feature map Φ(z) = κC(·, z) of H. Thus, the input/output

training sequence (zn, dn) is transformed to (Φ(zn), dn). The

learning phase is taking place in the transformed data.

As an alternative, we can employ popular well-established

real kernels defined on R2ν , using the complexification pro-

cedure [19]. In this case, the induced RKHS H is a real one.

However, we can define H2 and enrich it with a complex struc-

ture, i.e., construct the complex RKHS H, as it is described

in details in section III-A. Note that in this case, while H is a

complex RKHS, its “generating” kernel is a real one, i.e., κR.

We map the input data to H using the following simple rule:

Φ̂(z) = Φ̂(x+ iy) = Φ̂(x,y) = Φ(x,y) + iΦ(x,y), (16)

where Φ is the feature map of the real reproducing kernel κ,

i.e., Φ(x,y) = κR(·, (x,y)). It must be emphasized, that Φ̂

is not the feature map associated with the complex RKHS H.

Note that we cannot choose Φ to map the input data to H, if

we want to exploit the complex structure of H, as Φ doesn’t

have an imaginary component.

D. Linear and Widely Linear estimation in complex RKHS

Following the mapping of the input training data to the

complex RKHS, a linear, or a widely linear estimation function
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is employed. Thus, after the pure complex kernelization proce-

dure, we adopt the time adaptive R-linear (in RKHS) estima-

tion function Dn(w,v) = 〈Φ(zn),w〉
H
+〈Φ(zn)

∗,v〉
H

. This

is inline with the widely-linear estimation rationale [29], [30],

where both the original data and their conjugate analogue are

taken into account. The objective of the proposed machinery is

to estimate, in an adaptive manner and at each time instance,

the values of w and v so that the “disagreement” between dn
and Dn(w,v), measured via a user-defined loss function, is

minimized. However, note that both w, v live in the complex

RKHS H.

On the other hand, for the complexification technique,

the C linear estimation function Dn(w) =
〈

Φ̂(zn),w
〉

H

is employed, as this procedure implicitly adds a conjugate

component to the adopted model.

E. Selecting the Loss Functions

The strategy for constructing loss functions for the online

learning problem, which is employed in this work, contains

three steps.

1) Choose any convex continuous loss function l : C → R.

The function l needs not be differentiable. The only re-

quirement is for its Wirtinger subgradients to be known

in analytic form.

2) Form an ǫ-insensitive version of l following the rule:

lǫ(z) := max {0, l(z)− ǫ} , for all z ∈ C, (17)

where ǫ ≥ 0 takes a predetermined value.

3) Given a linear or widely linear kernel-based estimation

function Dn(w,v) and a given pair of training data

(zn, dn) ∈ Cν×C, define the loss function Lǫ,n(w,v) :
H → R, as follows:

Lǫ,n(w,v) = lǫ (yn −Dn(w,v)) , (18)

for all w,v ∈ H.

A few comments are in order on the reason behind the

introduction of the ǫ-insensitive version of l. The function lǫ
aims to robustify the online learning task against inaccura-

cies, noise, and outliers. Given a learning task, the designer

chooses, usually, a convex loss function, l, whose minimizers

are envisaged as the solutions to the learning task at hand.

However, it is often the case that the choice of l does not

fit accurately the underlying model and noise profile, due to

various measurement inaccuracies and the presence of outliers.

To tackle such an unpleasant situation, we adopt here the

strategy of enlarging the set of minimizers of l, without

changing radically the shape of l, since we would like to

adhere to our original intuition on the choice of l. This is

achieved by the introduction of lǫ. To see this, in a more

rigorous way, assume that ǫ ≥ 0 and l are chosen such

that minz∈C l(z) ≤ ǫ. Notice that such an assumption is

not tight, since, in most cases, the loss l is chosen to be a

nonnegative function, with l(0) = 0. Then, it is easy to verify

that (i) argminz∈C lǫ(z) = {z ∈ C : l(z) ≤ ǫ}, and (ii)

argminz∈C l(z) ⊂ argminz∈C lǫ(z). The ǫ-insensitive ratio-

nale is also in agreement to the robust statistics’ framework

[51].

To complete the presentation, we compute the Wirtinger

subgradients of Lǫ,n(w,v) for some popular loss functions l.
First comes a popular example.

Lemma 2 (Quadratic ǫ-insensitive loss function). Choose the

l2 norm, l2(z) = |z|2, as the function l in (18). Then the

Wirtinger’s subdifferential of Lǫ,n is given by

∂w∗Lǫ,n(w,v) =







{−e∗nΦ(zn)}, if |en|2 > ǫ
{0}, if |en|2 < ǫ

conv{0,−e∗nΦ(zn)}, if |en|2 = ǫ
(19)

and

∂v∗Lǫ,n(w,v) =







{−e∗nΦ
∗(zn)}, if |en|2 > ǫ

{0}, if |en|2 < ǫ
conv{0,−e∗nΦ

∗(zn)}, if |en|2 = ǫ
,

(20)

where en = dn−Dn(w,v) and Φ is the function used to map

the input data to H.

Proof: If we choose the l2 norm as the function l in

(18), then Lǫ,n(w,v) = max{0, |yn −Dn(w,v)|2 − ǫ}. Let

en(w,v) = yn − Dn(w,v) measure the error between the

filter output dn and the estimation function (in many cases

en(w,v) is simple denoted as en to save space). We compute

the subdifferential case by case.

1) Consider the case of a (w,v) such that |en(w,v)|2 >
ǫ. Then Lǫ,n(w,v) = |dn − Dn(w,v)|2 − ǫ =
l2 ◦ en(w,v) − ǫ. It can be easily verified that, as

l2(z) = |z|2 = z∗z, its conjugate Wirtinger’s gradient is

∇z∗ l2(z) = z. Furthermore, applying rules (4) and (5)

of the generalized Wirtinger’s calculus [19] we obtain

∇w∗en(w,v) = −Φ(zn)e
∗
n(w,v) and ∇v∗en(w,v) =

−Φ
∗(zn)e

∗
n(w,v). The result follows from the chain

rule property of Wirtinger’s calculus.

2) Next, consider the case of a (w,v) such that

|en(w,v)|2 < ǫ. Then Lǫ,n(w,v) = 0 and the result

is obvious.

3) If a (w,v) is given, such that |en(w,v)|2 = ǫ, then Lǫ,n

is not differentiable at (w,v). The result follows from

Lemma 1, as for any such point we can find a sequence

of points {(wm,vm)}m∈N converging to (w,v), where

(wm,vm) is chosen so that |en(wm,vm)| 6= ǫ (i.e.,

Lǫ,n is differentiable at (wm,vm) for all m ∈ N).

It is, by now, well-documented, [63], that the l2 norm is

not the best choice for a loss function in environments where

the noise is non-Gaussian. In order to build a general scheme,

which can accommodate any kind of noise and outlier profiles,

the present section gives freedom to the designer to choose

any convex objective function l. To support this approach,

we provide a couple of examples, which depart from the

classical l2 norm strategy. The next examples are motivated

by the recently overwhelming popularity of the l1 norm as a

robustness and sparsity-promoting loss function, [63].

Lemma 3 (l1 ǫ-insensitive complex loss function). Choose the
complex l1 norm, l1(z) = |z|, as the function l in (18). Then
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∂w∗Lǫ,n(w,v) =















{

−
(

sign(ℜ(en))
2

+
sign(ℑ(en))

2i

)

Φ(zn)
}

, if |ℜ(en)|+ |ℑ(en)| > ǫ

{0}, if |ℜ(en)|+ |ℑ(en)| < ǫ

conv
{

0,−
(

sign(ℜ(en))
2

+
sign(ℑ(en))

2i

)

Φ(zn)
}

, if |ℜ(en)|+ |ℑ(en)| = ǫ

∂v∗Lǫ,n(w, v) =















{

−
(

sign(ℜ(en))
2

+ sign(ℑ(en))
2i

)

Φ
∗(zn)

}

, if |ℜ(en)|+ |ℑ(en)| > ǫ

{0}, if |ℜ(en)|+ |ℑ(en)| < ǫ

conv
{

0,−
(

sign(ℜ(en))
2

+
sign(ℑ(en))

2i

)

Φ
∗(zn)

}

, if |ℜ(en)|+ |ℑ(en)| = ǫ

TABLE I
THE SUBDIFFERENTIAL OF THE l1 “REAL” LOSS FUNCTION, WHERE en = dn −Dn(w, v) AND Φ IS THE FUNCTION USED TO MAP THE INPUT DATA TO

H.

∂w∗Lǫ,n(w, v) =































{0} , if 0 ≤ |en| < ǫ
conv

{

0,− 1
2
e∗nΦ(zn)

}

if |en| = ǫ
{

− 1
2
e∗nΦ(zn)

}

, if ǫ < |en| < σ

conv
{

− σe∗n
2|en|

Φ(zn),− 1
2
e∗nΦ(zn)

}

, if |en| = σ
{

− σe∗n
2|en|

Φ(zn)
}

, if |en| > σ

∂v∗Lǫ,n(w,v) =































{0} , if 0 ≤ |en| < ǫ
conv

{

0,− 1
2
e∗nΦ

∗(zn)
}

if |en| = ǫ
{

− 1
2
e∗nΦ

∗(zn)
}

, if ǫ < |en| < σ

conv
{

− σe∗n
2|en|

Φ
∗(zn),− 1

2
e∗nΦ

∗(zn)
}

, if |en| = σ
{

− σe∗n
2|en|

Φ
∗(zn)

}

, if |en| > σ

TABLE II
THE SUBDIFFERENTIAL OF THE HUBER LOSS FUNCTION, WHERE en = dn −Dn(w,v) AND Φ IS THE FUNCTION USED TO MAP THE INPUT DATA TO H.

the Wirtinger’s subdifferential of Lǫ,n is given by

∂w∗Lǫ,n(w,v) =















{

−
e∗n

2|en|
Φ(zn)

}

, if |en| > ǫ

{0}, if |en| < ǫ

conv
{

0,−
e∗n

2|en|
Φ(zn)

}

, if |en| = ǫ

(21)

and

∂v∗Lǫ,n(w,v) =















{

−
e∗n

2|en|
Φ

∗(zn)
}

, if |en| > ǫ

{0}, if |en| < ǫ

conv
{

0,−
e∗n

2|en|
Φ

∗(zn)
}

, if |en| = ǫ

(22)

where en = dn −Dn(w,v) and Φ is the function used to map the
input data to H.

Proof: For the first case, observe that if a (w,v) is

given such that |en(w,v)| > ǫ, then Lǫ,n(w,v) = |dn −
Dn(w,v)| − ǫ = l1 ◦ en(w,v) − ǫ. As l1(z) = |z| =√
z∗z, its Wirtinger’s gradients are ∇zl1(z) = 1

2|z|z and

∇z∗ l1(z) = 1
2|z|z

∗. The result follows from the chain rule

of the generalized Wirtinger’s calculus and Lemma 1. For the

other two cases, we work as in Lemma 2.

Lemma 4 (l1 ǫ-insensitive “real” loss function). Choose the

“real” lr1 norm, lr1(z) = |ℜ(z)|+ |ℑ(z)|, as the function l in

(18). Then the Wirtinger’s subdifferential of Lǫ,n is given in

table I.

Proof: For the first case, observe that if a (w,v) is given

such that |ℜ(z)| + |ℑ(z)| > ǫ, then Lǫ,n(w,v) = |ℜ(dn −
Dn(w,v))|+ |ℑ(dn−Dn(w,v))|− ǫ = lr1 ◦ en(w,v)− ǫ. As

lr1(z) =|ℜ(z)|+ |ℑ(z)| = sign(ℜ(z))ℜ(z) + sign(ℑ(z))ℑ(z)

= sign(ℜ(z))z + z∗

2
+ sign(ℑ(z))z − z∗

2i
,

its Wirtinger’s gradients are

∇zl
r
1(z) =

(

sign(ℜ(z))
2

+
sign(ℑ(z))

2i

)

,

∇z∗ lr1(z) =

(

sign(ℜ(z))
2

− sign(ℑ(z))
2i

)

.

The result follows from the chain rule of the generalized

Wirtinger’s calculus and Lemma 1. For the other two cases,

we work as in Lemma 2.

Lemma 5 (ǫ-insensitive Huber loss function). Choose the

Huber loss,

lh(z) =

{

1
2 |z|2 if |z| < σ

σ(|z| − σ
2 ) if |z| ≥ σ

,

as the function l in (18), for some σ > ǫ. Then the Wirtinger’s

subdifferential of Lǫ,n is given in table II.

Proof: We work similarly to lemmas 2 and 3.
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IV. COMPLEX KERNEL ADAPTIVE PROJECTED

SUBGRADIENT METHOD (CKAPSM)

The algorithmic scheme, which will be developed in this

section, is based on the Adaptive Projected Subgradient

Method (APSM) [44]–[46], [50]. This has been motivated

by projection-based adaptive algorithms, e.g., the Normalized

LMS and the Affine Projection Algorithm (APA) [64]. The

APSM has been successfully applied to a variety of online

learning problems, [9], [12], [50] and has been very recently

generalized to tackle constrained optimization tasks in general

Hilbert spaces [46]. In order to speed up convergence, APSM

concurrently processes multiple data points at every time

instant. Given a user defined positive integer q, for every

time instant n, APSM considers a sliding window on the

time axis of size (at most) q: Jn := max{0, n− q + 1}, n.

Each k ∈ Jn associates to the loss function Lǫ,k, which,

in turn, is determined by the k-th training data point (e.g.

(xk, yk)). The set Jn indicates the loss functions that are going

to be concurrently processed at the time instant n. For a real

data sequence {(xn, yn)}Nn=1, APSM then employs the update

mechanism:

wn+1 = wn − µn

∑

k∈In

ω
(n)
k

Lǫ,k(wn)

‖∇sLǫ,k(wn)‖2
∇sLǫ,k(wn),

(23)

where Lǫ,k(wn) is the loss function between yk and the esti-

mation function Dk(w) (which is chosen in a manner similar

to section III-E, i.e., Dk(w) = 〈Φ(xk),w〉), ∇sLǫ,k(wn) is

a subgradient of Lǫ,k at wn, µn is an extrapolation parameter,

ω
(n)
k are weights chosen such that

∑

k∈In
ω
(n)
k = 1 and In is

an appropriately chosen index set4 (In ⊂ Jn). The interested

reader may dig deeper on this algorithmic scheme by referring

to [12], [60]. In this section we develop a similar machinery

for complex data sequences using the newly introduced notion

of Wirtinger’s subgradients.

A. The CKAPSM Algorithm

We develop the algorithm for a general widely linear

estimation function Dn(w,v), as this have been defined in

section III-D. For a C-linear estimation function Dn(w),
simply ignore the vn term.

1) Choose a non-negative ǫ ≥ 0 and a positive number

q, which will stand for the number of loss functions

that are concurrently processed at every time instant n.

Furthermore, fix arbitrary w0 and v0 as a starting point

for the algorithm (typically w0 = v0 = 0).

2) Given any time instant n ∈ N, define the sliding

window on the time axis, of size at most q: Jn :=
max{0, n− q + 1}, n. The user-defined parameter q de-

termines the number of training points (and associated

loss functions) that are concurrently processed at each

time instant n.

3) Given the current estimates wn, vn, choose

any Wirtinger subgradient ∇s
w∗Lǫ,k(wn,vn) ∈

∂w∗Lǫ,k(wn,vn) and ∇s
v∗Lǫ,k(wn,vn) ∈

4It will be defined later in section IV-A.

∂v∗Lǫ,k(wn,vn). Thus, a collection of Wirtinger

subgradients is formed:

{W ǫ,k,n = ∇s
w∗Lǫ,k(wn,vn)}k∈Jn

and

{V ǫ,k,n = ∇s
v∗Lǫ,k(wn,vn)}k∈Jn

.

4) Define the active index set In := {k ∈ Jn :
∇s

w∗Lǫ,k(wn,vn) 6= 0, or ∇s
v∗Lǫ,k(wn,vn) 6= 0}.

5) If In 6= ∅, define a set of weights {ω(n)
k }k∈In

⊂ (0, 1],

such that
∑

k∈In
ω
(n)
k = 1. Each parameter ω

(n)
k assigns

a weight to the contribution of Lǫ,k to the following

concurrent scheme. Typically, we set ω
(n)
k = 1/ cardIn,

for all k ∈ In (card stands for the cardinality of a set).

6) Calculate the next estimate of w,v using the following

recurrent scheme:

wn+1 = wn − µn

∑

k∈In
ω
(n)
k

Lǫ,k(wn,vn)
2Uǫ,k,n

W ǫ,k,n,

vn+1 = vn − µn

∑

k∈In
ω
(n)
k

Lǫ,k(wn,vn)
2Uǫ,k,n

V ǫ,k,n.

(24)

where Uǫ,k,n = ‖W ǫ,k,n‖2 + ‖V ǫ,k,n‖2.

Equations (24) have been developed directly from the

traditional recurrent scheme of the real case, i.e., relation

(23), by substituting the real subgradients with the newly

introduced Wirtinger subgradients via the rationale developed

in the proof of Lemma 1. Loosely speaking, one can replace

the real (partial) subgradient ∇s
wLǫ,k(w,v), that is obtained

if Lǫ,k is considered as a function defined on H2 ×H2, with

2∇s
w∗Lǫ,k(w,v). In the case where In = ∅, the summation

term over ∅ will be set equal to 0. The extrapolation parameter

µn lies within the interval (0, 2Mn, ), where Mn is given in

(26). Notice that, due to convexity of ‖ ·‖2, it is easy to verify

that Mn ≥ 1. For larger values of the user-defined parameter

q, Mn typically grows far from 1. We typically choose µn as

µn =

{

2Mn − 0.05 if Mn ≤ 2
min(Mn, µ0) otherwise,

(25)

where µ0 is a user defined parameter (typically between 1 and

4).

Building upon the aforementioned algorithmic scheme, two

realizations of the Complex Kernel Adaptive Projected Subgra-

dient Method (CKAPSM) have been developed. The first one,

which is denoted as CKAPSM, adopts the complexification

trick to map the data to a complex RKHS using any real kernel.

Moreover, the C-linear function Dn(w) = 〈Φ̂(zn),w〉H is

employed to estimate the filter’s output. The second algorithm,

which is denoted as Augmented Complex Kernel Adaptive

Projected Subgradient Method (ACKAPSM), adopts the pure

complex kernelization trick to map the data to a complex

RKHS using the complex gaussian kernel. In the latter case,

to estimate the filter’s output, the widely linear (augmented)

function Dn(w,v) = 〈Φ(zn),w〉H + 〈Φ∗(zn),v〉H is used.

B. Sparsification

Any typical kernel-based adaptive filtering algorithm, suf-

fers from increasing memory and computational requirements,

as a growing number of training points is involved in the

solution. This is verified by the celebrated Representer theorem
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Mn =















































∑

k∈In
ω

(n)
k

L2
ǫ,k

(wn,vn)

4Uǫ,k,n
∥

∥

∥

∑

k∈In
ω

(n)
k

Lǫ,k(wn,vn)

2Uǫ,k,n
W ǫ,k,n

∥

∥

∥

2

+
∥

∥

∥

∑

k∈In
ω

(n)
k

Lǫ,k(wn,vn)

2Uǫ,k,n
V ǫ,k,n

∥

∥

∥

2 ,

if
∑

k∈In
ω
(n)
k

Lǫ,k(wn,vn)
2Uǫ,k,n

W ǫ,k,n 6= 0,

or
∑

k∈In
ω
(n)
k

Lǫ,k(wn,vn)
2Uǫ,k,n

V ǫ,k,n 6= 0,

1, otherwise.

(26)

[65], which states that the solution of such a task lies in the

finite dimensional subspace of the RKHS, which is spanned

by the mapped training (real) input data points, i.e.,

wn =

n−1
∑

k=0

akΦ(xk).

In our case, where complex input training data are considered,

this is equivalent with

wn =

n
∑

k=0

akΦ(zk),vn =

n
∑

k=0

akΦ
∗(zk), (27)

if the widely linear estimation rationale is adopted, as it can be

easily verified by the gradients of the loss functions considered

in section III-E (where Φ is the function used to map the input

data to H, for k = 0, . . . , n, and ak ∈ C).

In this paper, to cope with this problem, we focus on the

projection onto closed l2 balls rationale, introduced in [12],

[60]. In this context, we choose a positive parameter ∆ and

impose the l2 closed ball on H with center 0 and radius ∆,

i.e., B[0,∆] on the optimization scheme. That is, we replace

the recurrent step of the algorithm with

wn+1 = PB[0,∆]

(

wn − µn

∑

k∈In

ω
(n)
k

Lǫ,k(wn,vn)

2Uǫ,k,n

W ǫ,k,n

)

,

vn+1 = PB[0,∆]

(

vn − µn

∑

k∈In

ω
(n)
k

Lǫ,k(wn,vn)

2Uǫ,k,n

V ǫ,k,n

)

,

where PB[0,∆] is the metric projection mapping onto the closed

ball B[0,∆], which is given by

PB[0,∆](f ) =

{

f , if ‖f‖ ≤ ∆,
∆
‖f‖f , if ‖f‖ > ∆.

Let us, now, turn our attention on the weights update stage

(i.e., equations (24)) and discuss on how they are practically

implemented on a machine, as both w and v are elements of

an infinite dimensional RKHS. After the receipt of the n−th

sample, both w and v have a finite representation in terms of

Φ(zk) and Φ
∗(zk) respectively, for k = 0, . . . , n − 1, (see

(27)). Thus, one needs to store into the machine’s memory

only the n coefficients, a0, a1, . . . , an−1, of the expansion.

Let An−1 = {a0, a1, . . . , an−1} be the set of the coefficients

that has been stored at iteration n−1. Next, as the n-th sample

has been received, equations (24) update at most q− 1 of the

coefficients in An−1 (the ones that are inside the active set)

and, possibly, compute and store the coefficient an (if this is

inside the active set, otherwise an is set to 0). In particular,

for every k ∈ max{0, n− q + 1}, n, which is inside the active

set In, we employ the update equation:

anewk = aoldk − µnω
(n)
k

Lǫ,k(wn,vn)

2Uǫ,k,n

Ck,

where a
(old)
n = 0 and Ck is the coefficient of Φ(zk) in the

respective gradients W ǫ,k,n and V ǫ,k,n
5. Consequently, the

norms of wn+1 and vn+1 are computed6 and if they are found

larger than ∆, each one of the n + 1 coefficients of An is

shrunk by the factor ∆
‖wn+1‖

and/or ∆
‖vn+1‖

respectively. If,

after multiple shrinks, some of the coefficients become really

small (i.e., smaller than a predefined threshold ǫ∆), they are

thrown out of the stored memory.

V. EXPERIMENTS

The performance of CKAPSM and ACKAPSM has been

tested in the context of: (a) a non-linear channel identification

task, (b) a non-linear channel equalization task and (c) an

equalization task of a QPSK modulation scheme. In all the

experiments, the parameters of the tested algorithmic schemes

were tuned for the best performance (i.e., to achieve the

smallest possible MSE). The code for the experiments can

be found at http://users.sch.gr/pbouboulis/kernels.html.

A. Channel Identification

We consider the non-linear channel presented in [28], which

consists of a linear filter:

tn =
5
∑

k=1

hk · sn−k+1,

where

hk = 0.432

(

1 + cos
2π(k − 3)

5
−

(

1 + cos
2π(k − 3)

10

)

i

)

,

for k = 1, . . . , 5, and the nonlinear component xn = tn +
(0.15− 0.1i)t2n. At the receiver end of the channel, the signal

5For example, if the l2 norm has been chosen, Ck = −e∗
k

, as equation
(19) suggests.

6The direct computation of the norm ‖wn+1‖ is a computation-
ally demanding step. However, as in the present context only q el-
ements of the expansion of w are updated, we can compute the
norm ‖wn+1‖ using a recurrent scheme. For example, if q =
1, then wn+1 = wn + an+1Φ(zn+1). Then ‖wn+1‖2 =
〈wn+1,wn+1〉H = ‖wn‖2 + an+1

∑n
k=0 a

∗
k
〈Φ(zk),Φ(zn+1)〉H +

a∗n+1

∑n
k=0 ak〈Φ(zn+1),Φ(zk)〉H + 〈Φ(zn+1),Φ(zn+1)〉H .

http://bouboulis.mysch.gr/kernels.html
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is corrupted by white noise and then observed as rn
7. The

input signal that was fed to the channel had the form

sn =
(

√

1− ρ2Xn + iρYn

)

, (28)

where Xn and Yn are zero-mean random variables. This

input is circular for ρ =
√
2/2 and highly non-circular if ρ

approaches 0 or 1 [28]. The aim of the channel identification

task is to construct a non-linear filter that acts on the input sn
and reproduces the output xn as close as possible. To this end,

we apply CKAPSM and ACKAPSM to the set of samples

((sn, sn−1, . . . , sn−L+1), rn) ,

where L > 0 is the filter length. To measure the closeness of

fit between the original non-linear channel and the estimated

filter, we compute the mean square error between the estimated

filter’s output, i.e., dn, and xn.

We tested CKAPSM and ACKAPSM using various input

random variables (e.g., gaussian, uniform) as well as some

popular noise models (e.g., gaussian, uniform, student, im-

pulse) and different types of loss functions. Their performance

is compared with the recently developed NCKLMS [19]

and ANCKLMS [62], which have been found to perform

significantly better [19] than other non-linear complex adaptive

algorithmic schemes, such as Multi Layer Perceptrons (MLPs)

[28] and Complex non-linear Gradient Descend (CNGD) [27].

In all of the performed tests (and especially in the non-circular

case), CKAPSM and ACKAPSM considerably outperform the

other two algorithms in terms of convergence speed and steady

state mean square error. Figures 1, 3, 4, show the mean

learning curves over 300 different sets of 10000 samples for

each case.

In order to study the tracking performance of the proposed

schemes in a time-adaptive setting, the case of a non-linear

channel that undergoes a sudden significant change is consid-

ered in Figure 2. This is a typical scenario used in the context

of adaptive filtering. After receiving sample n = 5000, the

coefficients of the nonlinear filter become:

h1 = 0.5− 0.5i, h2 = 0.1i− 0.2, h3 = 0.6− 0.3i,

h4 = −0.5, h5 = −0.8 + 1i,

and xn = tn + (−0.1 + 0.08i)t2n. Recall that, while CKLMS

keeps the information of the first channel throughout the

training phase, as the coefficients associated with the first

filter remain in the associated expansion, CKAPSM is able

to “forget” the information provided by the original channel

via the shrinking process, which has been described in section

IV-B. The novelty criterion sparsification mechanism was used

for the NCKLMS and ANCKLMS algorithms with parameters

δ1 = 0.15 and δ2 = 0.2. The radius of the closed ball for the

CKAPSM and ACKAPSM sparsification technique was set to

∆ = 10.

The values of the parameters used in the algorithms are:

σ = 5 (for both the real gaussian kernel and the complex

gaussian kernel), q = 5 or q = 20 (this is shown in each

figure), ǫ = 10−9 and µ0 = 4.

7Hence, the input of the channel is sn and the output rn.
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Fig. 3. Learning curves for NCKLMS (µ = 1), ANCKLMS, (µ = 1/4),
CKAPSM and ACKAPSM (filter length L = 5) for the nonlinear channel
identification problem with gaussian input and heavy-tailed student noise (ν =
3)) at 20dB, for the non-circular input case (ρ = 0.1). In the realization of
the CKAPSM and ACKAPSM the Huber loss function was employed.

The reason behind the improved performance of the APSM

variants, over the Normalized LMS ones [19], [62], is due

to the form of the iterations given in (23) and (24). In the

NLMS framework, one pair of training data is processed per

time instant n, while the APSM gives us the freedom to

concurrently process a set of training data, indicated by In,

∀n. To each data pair, that belongs to In, a weight ω
(n)
k is

assigned to quantify the significance of the specific pair of

data in the concurrency scheme. Such a weighted contribution

of a set of training data helps APSM to achieve, in most of

the cases, lower error floors compared to NLMS techniques.

Even further, due to the multiplicity of data that are utilized

in parallel, an extrapolation parameter µn is defined, which

can significantly speed up convergence, since it obtains values

≥ 2. Recall that in the NLMS framework, [19], [62], the

associated extrapolation parameter is upper bounded by 2. For

a more detailed discussion on the superior performance of the

NLMS variants versus the MLPs [28] and the CNGD [27], the

interested reader is referred to [19], [62].

B. Channel Equalization

The non-linear channel considered in this case consists of

a linear filter:

tn = (−0.9 + 0.8i) · sn + (0.6− 0.7i) · sn−1

and a memoryless nonlinearity

xn = tn + (0.1 + 0.15i) · t2n + (0.06 + 0.05i) · t3n.
At the receiver end of the channel the signal is corrupted by

white Gaussian noise and then observed as rn. The input signal

that was fed to the channels had the form

sn = 0.5
(

√

1− ρ2Xn + iρYn

)

, (29)

where X(n) and Y (n) are gaussian or uniform random

variables. The level of the noise was set to 20dB. The aim of a

channel equalization task is to construct an inverse filter, which

acts on the output rn and reproduces the original input signal
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Fig. 1. Learning curves for NCKLMS (µ = 1), ANCKLMS, (µ = 1/4), CKAPSM and ACKAPSM (filter length L = 5) for the nonlinear channel

identification problem with gaussian input and gaussian noise at 20dB, for (a) the circular input case (ρ =
√
2/2) and (b) the non-circular input case

(ρ = 0.1). In the realization of the CKAPSM and ACKAPSM the l2 norm was employed.
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Fig. 2. Learning curves for NCKLMS (µ = 1), ANCKLMS, (µ = 1/4), CKAPSM and ACKAPSM (filter length L = 5) for the nonlinear two-channels

identification problem with gaussian input and gaussian noise at 20dB, for (a) the circular input case (ρ =
√
2/2) and (b) the non-circular input case (ρ = 0.1).

In the realization of the CKAPSM and ACKAPSM the l2 norm was employed. After index n = 5000, both the linear and the non-linear component of the
channel have been changed.
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Fig. 4. Learning curves for NCKLMS (µ = 1), ANCKLMS, (µ = 1/4), CKAPSM and ACKAPSM (filter length L = 5) for the nonlinear channel

identification problem with uniform input and gaussian noise at 20dB, for (a) the circular input case (ρ =
√
2/2) and (b) the non-circular input case

(ρ = 0.1). In the realization of the CKAPSM and ACKAPSM the l2 loss function was employed.
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as close as possible. To this end, we apply the algorithms to

the set of samples

((rn+D, rn+D−1, . . . , rn+D−L+1, sn) ,

where L > 0 is the filter length and D the equalization time

delay, which is present to, almost, any equalization set up.

Experiments were conducted on 300 sets of 5000 samples of

the input signal considering both the circular and the non-

circular case. The results were compared to the NCKLMS and

ANCKLMS, which have been shown to perform significantly

better than other complex non-linear techniques such as MLPs

and CNGD [19]. The values of the parameters used in the

algorithms are: σ = 5 (for both the real gaussian kernel

and the complex gaussian kernel), q = 5, ǫ = 10−8 and

µ0 = 4. The sparsification mechanism adopted for this case

was identical to the one employed in the channel identification

paradigm. As it can be seen in figures 5, 6, CKAPSM and

ACKAPSM converge more rapidly to the steady state mean

square error, than NCKLMS and ANCKLMS (which have

almost overlapping learning curves).

C. QPSK Equalization

In this case, we considered the non-linear channel which

consists of the linear filter:

tn = (−0.9 + 0.8i) · sn + (0.6− 0.7i) · sn−1

and the memoryless nonlinearity

xn = tn + (0.1 + 0.15i) · t2n.
At the receiver end of the channel the signal is corrupted by

white Gaussian noise and then observed as rn. The input signal

that was fed to the channel consisted of the 4 QPSK symbols:

s1 = 1 + i, s2 = 1 − i, s3 = −1 + i and s4 = −1 − i. Both

the circular and the non-circular input case were considered.

For the first case, the 4 symbols are equiprobable, while

in the later their probabilities for occurrence in the input

sequence are p1 = 1/10, p2 = 3/10, p3 = 2/10 and

p4 = 4/10, respectively (applications of non equiprobable

symbol channels can be found in [66]). The objective in this

task is to construct an inverse filter, which acts on the output rn
and reproduces the original input symbols as close as possible.

Experiments were performed on 100 sets of 10000 input

symbols. In the circular case, the NCKLMS and CKAPSM

exhibit similar performance reaching a steady state mean SER

of 0.0039 and 0.0034 respectively. For the non-circular case

NCKLMs attained a steady state mean SER of 0.005, while

the steady state mean SER of CKAPSM reached 0.0036 (i.e.,

a decrease of 28%). The values of the parameters used in

the CKAPSM algorithm are: σ = 5, q = 5, ǫ = 10−8 and

µ0 = 4. Figure 7 shows the SER versus SNR curves of those

algorithms.

VI. CONCLUSIONS

A general tool for treating non-linear adaptive filtering

problems of complex valued signal processing, on complex

Reproducing Kernel Hilbert Spaces, has been developed. In

this context, the complex input data are mapped into a complex

RKHS, where the learning phase is taking place (based on the

Adaptive Projected Subgradient Method), using both linear

and widely linear estimation filters. The complex RKHS is

implicitly defined through the choice of the kernel function.

Both pure complex kernels (such as the complex gaussian one)

as well as real kernels can be employed. Furthermore, any

convex continuous function, whose subgradient is given in an

analytic form, can be exploited to measure the loss between

the output of the specific system and the desired response.

To compute the subgradients of loss functions defined on

complex RKHS, the notion of Wirtinger’s subgradient has been

introduced, and related subgradients have been derived for a

number of popular cost functions. The effectiveness of the

proposed framework has been demonstrated in several non-

linear adaptive filtering tasks.
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Fig. 6. Learning curves for NCKLMS (µ = 1/2), ANCKLMS, (µ = 1/4), CKAPSM and ACKAPSM (filter length L = 5, delay D = 2) for the nonlinear

channel equalization problem with uniform input and gaussian noise at 20dB, for (a) the circular input case (ρ =
√
2/2) and (b) the non-circular input case

(ρ = 0.1). In the realization of the CKAPSM and ACKAPSM the l2 loss function was employed.
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